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Talk Outline

I Internal Diffusion Limited Aggregation (internal DLA)
and its deterministic scaling limit

I Fluctuations:
Mean field theory = variant of Gaussian free field (GFF)
Maximum fluctuation

I Continuum limit Hele-Shaw flow

I analogue of conserved quantities for Hele-Shaw flow:
Martingales
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Internal DLA with Multiple Sources

I Finite set of points x1, . . . ,xk ∈ Zd .

I Start with mi particles at site xi .

I Each particle performs simple random walk in Zd until
reaching an unoccupied site.

I Get a random set of ∑
i

mi occupied sites in Zd .

I The distribution of this random set does not depend on the
order of the walks (Diaconis-Fulton ’91).
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Limiting shape

I Fix a single source at the origin in Zd .

I Run internal DLA on 1
nZ

d with Cnd particles.

I Lawler-Bramson-Griffeath ’92
Theorem. The limit shape is a ball.

I Diaconis-Fulton smash sum: overlapping clusters
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Diaconis-Fulton sum of two squares in Z2 overlapping in a
smaller square.
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Levine-Peres Theorem 2008: The rescaled limit shape of any
distribution is given by the solution to an obstacle problem.

Divisible Sandpile Model: “Toppling” process
initial distribution 7−→ final distribution

µ(x) 7−→ ν(x) (e.g., 1Ω1 + 1Ω2 7−→ 1D)

I Replace w(x) > 1 by w(x) = 1

I Donate (w(x)−1)/2d of the excess to each nearest neighbor.

I Repeat until ν(x)≤ 1.

I Abelian property: ν(x) is the same regardless of order of
toppling.
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Divisible Sandpile starting from the sum of two squares in Z2.
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Pavel Etingof, Max Rabinovich

Hexagonal lattice
Balanced random walk

Jim Propp Question: Random walk with drift

Answer: Parabolic obstacle problem: “Heat ball”
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Corollary of Levine-Peres The scaled limit of the internal DLA
evolution is Hele-Shaw flow:

Ω(t)⊂ Rd grows according to V = normal velocity of ∂Ω(t)

given by V = |∇Gt |

(Gt = Green’s function for Ω(t) with pole at 0 and V dσt is the
hitting probability of Brownian motion.)
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Meakin-Deutch 1986 Proposed internal DLA as model for
electropolishing, etching, and corrosion. What grows is the fluid
region.

How smooth? Numerical simulation of t-particle blob has average
fluctuations

O(
√

log t) d = 2

O(1) d = 3

Lawler 1995: Max fluctuation O(r1/3), r = t1/d , almost surely.
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Internal DLA blob At with t = 106 particles in Z2
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Detail of boundary of the 1 million particle blob
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t = 105 Symmetric difference: Early = red; Late = blue
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Theorem 1 (J–, Levine, Sheffield) Let d = 2.
As t = πr2→ ∞, the rescaled discrepancy function

Xt = r−1
∑
z∈Z2

(1At −1B(r))δz/r −→ X dθ

X is a Gaussian random distribution on unit circle S1, associated
with the Hilbert space H1/2(S1).

X (θ) = c
∞

∑
k=1

αk
coskθ√
k + 1

+ βk
sinkθ√
k + 1

where αk and βk are independent N(0,1).
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Gaussian random variables in general

X (x) = ∑
k

αkφk(x)

where φk is an orthonormal basis of a Hilbert space and αk are
independent N(0,1) real-valued coefficients. In our case, the
Hilbert spaces are Sobolev spaces and the random variables are
identified with distributions.
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Dual Formulation

Central limit theorem for finite-dimensional projections:∫ 2π

0

∫
∞

0
Xt φ(ρ,θ)ρdρdθ−→ N(0,V ) t→ ∞

φ(1,θ) = a0 +
N

∑
k=1

ak coskθ +bk sinkθ;

V = πc
N

∑
k=1

(a2
k +b2

k)/(k + 1) = variance
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Theorem 2, J–, Levine, Sheffield Let d = 2.
Let T (t) = # points in unit intensity Poisson process in [0, t].

F (x) = inf{t : x ∈ AT (t)}= arrival time

L(x) =
√

F (x)/π−|x |= lateness

Then as R → ∞

L(bRx1c,bRx2c)

tends to a variant of the Gaussian free field (GFF), a random
distribution for the Hilbert space H1 of the plane.
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‖f ‖2
D =

∫
R2
|∇x f |2dx =

∫ ∫
(|∂ρf |2 + ρ

−2|∂θf |2)ρdρdθ

‖g(ρ)e ikθ‖2
D = 2π

∫
∞

0
(|ρg ′(ρ)|2 +k2|g(ρ)|2)dρ/ρ

Variant norm in our theorem:

‖g(ρ)e ikθ‖2 = 2π

∫
∞

0
(|ρg ′(ρ)|2 + (|k |+1)2|g(ρ)|2)dρ/ρ
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Dual Formulation

As r → ∞,
1

r2 ∑
x∈Z2/r

L(rx)
φ(x)

|x |2
−→ N(0,V )

where z = x1 + ix2 = ρe iθ,

φ(z) = ψ0(ρ) + Re
N

∑
k=1

ψk(ρ)e ikθ

where ψk are smooth and compactly supported on 0 < ρ < ∞ and
the variance V is the square of the dual norm to H1 above

V = 2π

N

∑
k=0

∫
∞

0

∣∣∣∣∫ ∞

η

ψk(ρ)(s/ρ)|k|+1dρ/ρ

∣∣∣∣2 ds/s
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(a) (b)

(a) AT (t) for t = 105; Early = L< 0 = red; Late = L> 0 = blue.
(b) Same cluster representing L by red-blue shading.
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Heuristics: Same predictions as Meakin-Deutch. At scale r ,

Variance(X (θ))≈
r

∑
k=1

sin2 kθ + cos2 kθ

(
√
k + 1)2

≈ log r

=⇒ Standard Deviation(X (θ))≈
√

log r (d = 2)

Maximum fluctuation: r “distinct” values of θ

worst of r trials O(log r) (d = 2)

In dimension d = 3, the prediction is

typical fluctuation = O(1); worst = O(
√

log r)
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Theorem 3, J–, Levine, Sheffield Almost surely with t = ωd r
d ,

B(r −C log r)∩Z2 ⊂ At ⊂ B(r +C log r) (d = 2)

B(r −C
√

log r)∩Zd ⊂ At ⊂ B(r +C
√

log r) (d > 2)

Asselah, Gaudillière, 2009 Significant improvement of Lawler’s
power law.

Asselah, Gaudillière, 2010 Theorem 3 also follows from their
methods.

David Jerison Internal DLA



How to guess the form of Theorems 1 and 2
Rescale to unit size; pretend the domain is r < 1 + εf (θ).

f (θ) = α0 +∑
k

αk coskθ + βk sinkθ

Under Hele-Shaw flow, f changes in proportion to

|∇G | ≈ ∂

∂r

[
α0 +∑

k

αk r
k coskθ + βk r

k sinkθ

]

Restoring force:

dαk =−(k + 1)αkdρ +dB (ρ = log r)
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Conserved harmonic moments (quadrature domains)

If ∆φ = 0, then for Hele-Shaw flow Ω(t)

d

dt

∫
Ω(t)

φdx =
∫

∂Ω(t)
φVdσt = φ(0)

Discrete analogue:

M(t) = ∑
x∈A(t)

(φ(x)−φ(0)) (discrete harmonic φ)

is a martingale.
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Theorems 1 and 2 are proved using the martingale central limit
theorem

Sn =
n

∑
1

Xi , E(Xn|X1, . . . ,Xn−1) = 0

Qn =
n

∑
1

X 2
i ; s2

n = ES2
n = EQn

If Qn/s
2
n → 1 and

n
max
i=1

X 2
i /s

2
n → 0 almost surely, then

Sn/sn −→ N(0,1) in law

(Martingale representation theorem: Sn = Bt(n), coupling with a
Brownian motion.)
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Are there enough harmonic polynomial test functions?

Yes. Given a polynomial P defined on Rd and a radius r , there is a
unique harmonic polynomial Q that agrees with P on the sphere of
radius r . (Indeed, spherical harmonics can be used as a basis for
L2(Sd−1).)

David Jerison Internal DLA



Sketch of proof of of Theorem 1.

φ(z) = a0 + Re
N

∑
k=1

αkz
k ; αk = ak + ibk

ΦR(z) = a0 + Re
N

∑
k=1

αkPk(z)/Rk

Pk(z) = zk +O(|z |k−2) and Pk is discrete harmonic,

M(t) := ∑
z∈At

(ΦR(z)−a0), 0≤ t ≤T = πR2 IS A MARTINGALE
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Q(T ) = ∑
z∈AT

|ΦR(z)−a0|2

= T

[
1

2

N

∑
k=1

|αk |2/(k + 1)

]
(1 +O(T−1/3))

Hence, the martingale convergence theorem =⇒

M(T )/T 1/2 −→ N(0,V ) asT → ∞

with

V =
1

2

N

∑
k=1

|αk |2/(k + 1)
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XT = R−1
∑
z∈Z2

(1AT
−1B(R))φ(z/R)

M(T )/
√
T = T−1/2

∑
z∈Z2

(1AT
−1B(R))ΦR(z)

and ΦR(z)−φ(z/R) is small near |z |= R.
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Higher dimensional Central Limit Theorems for Fluctuations

XT = R−d/2
∑

x∈Zd

(1AT
−1B(R))φ(x/R), T = ωdR

d

Fails in dimensions d ≥ 4. Best possible mean value properties:

1

Rd ∑
x∈B(R)

(Φ(x)−Φ(0)) = Ω(R−2) (d ≥ 5)

Sandpile wT is rounder than a ball!

∑
x∈Zd

(Φ(x)−Φ(0))wT = 0

To rescue theorem in all dimensions, use

X̃T = R−d/2
∑

x∈Zd

(1AT
−wT )Φ(x), T = ωdR

d
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Sketch of proof of Theorem 3.

Early/late point detector martingale using test function = discrete
Green’s function in a ball.

Fix z0 ∈ B, a ball in Zd . Define

Gz0(z) = P(random walk from z reaches z0 before exiting B)

Discrete harmonic function in punctured ball
Boundary values = 0 on ∂B and = 1 at z0.
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Lemma
No Tentacles
Let |x |>m, x ∈ Zd ,

P(x ∈ At and #(At ∩B(x ,m))≤m2/C )≤ Ce−m/C d = 2

P(x ∈ At and #(At ∩B(x ,m))≤md/C )≤ Ce−m
2/C d > 2
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Lemma
No late points implies no early points

Proof: Assume by contradiction there is an early point. This forces
a large positive value of a point detector martingale.

Lemma
No early points implies no late points

Proof: Assume by contradiction, there is a late point. This forces a
large negative value of a point detector martingale.
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Early and late point detector

Hζ(z)≈ ζ/ρ

ζ− z
ρ = |ζ|

H(0) = 1/ρ, H(ζ)≈ 1, and discrete harmonic except at ζ

Mζ(n) = ∑
z∈A′(n)

(Hζ(z)−1/ρ)

A′(n) stops at ∂Bρ(0), where Hζ(z) = 1/2ρ. Because A′(n) is
stopped before reaching the singularities, Mζ is a martingale.
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LEMMA 1. No `-late implies no m = C`-early

Event Q[z ,n]:

I z is the nth point

I z is m-early (z ∈ A(πr2), r ≈ |z |−m)

I No previous point is `-late

We will use Mζ for ζ = (1 + 4m/r)z to show for 0 < n ≤ T ,

P(Q[z ,n])≤ T−10
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There is a Brownian motion such that

Mζ(n) = Bζ(sζ(n)), sζ(n) = Var(Mζ(n))

On the event Q[z ,n]

P(sζ(n) < 100 logT ) > 1−T−10

P(Mζ(n) > c0m) > 1−T−10

On the other hand, (s = 100logT )

P( sup
s ′∈[0,s]

Bζ(s ′)≥ s)≤ e−s/2 = T−50
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LEMMA 2. No m-early implies no ` =
√
C (logT )m-late

Event B[ζ]: 0 < n ≤ T

I ζ is the nth point

I ζ is `-late

I no point of A(n) is m-early

We will use Mζ to show that for 0 < n ≤ T ,

P(B[ζ])≤ T−10

David Jerison Internal DLA



On the event B[ζ], ρ = |ζ|,

Mζ(T1)≤−` (T1 = π(ρ + `)2)

P(sζ(n) < 100m+ 100logT ) > 1−T−10

On the other hand, (with k ≈ `/m, s = m)

P( inf
s ′∈[0,s]

Bζ(s ′)≤−ks)≤ e−k
2s/2 ≈ T−50
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Happy Birthday Eli!
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